On the p-Biharmonic Operator with Critical Sobolev Exponent and Nonlinear Steklov Boundary Condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Positivity for the Biharmonic Operator under Steklov Boundary Conditions

The positivity-preserving property for the inverse of the biharmonic operator under Steklov boundary conditions is studied. It is shown that this property is quite sensitive to the parameter involved in the boundary condition. Moreover, positivity of the Steklov boundary value problem is linked with positivity under boundary conditions of Navier and Dirichlet type.

متن کامل

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Problem with critical Sobolev exponent and with weight

We consider the problem: −div(p∇u) = u + λu, u > 0 in Ω, u = 0 on ∂Ω. Where Ω is a bounded domain in IR, n ≥ 3, p : Ω̄ −→ IR is a given positive weight such that p ∈ H(Ω) ∩ C(Ω̄), λ is a real constant and q = 2n n−2 . We study the effect of the behavior of p near its minima and the impact of the geometry of domain on the existence of solutions for the above problem.

متن کامل

Minimizers and symmetric minimizers for problems with critical Sobolev exponent

In this paper we will be concerned with the existence and non-existence of constrained minimizers in Sobolev spaces D(R ), where the constraint involves the critical Sobolev exponent. Minimizing sequences are not, in general, relatively compact for the embedding D(R) →֒ L ∗ (R , Q) when Q is a non-negative, continuous, bounded function. However if Q has certain symmetry properties then all minim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Analysis

سال: 2014

ISSN: 2314-498X,2314-4998

DOI: 10.1155/2014/498386